메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제24권 제1호
발행연도
2018.1
수록면
86 - 92 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: A diagnostic need often arises to estimate bone age from X-ray images of the hand of a subject during the growthperiod. Together with measured physical height, such information may be used as indicators for the height growth prognosisof the subject. We present a way to apply the deep learning technique to medical image analysis using hand bone age estimationas an example. Methods: Age estimation was formulated as a regression problem with hand X-ray images as inputand estimated age as output. A set of hand X-ray images was used to form a training set with which a regression model wastrained. An image preprocessing procedure is described which reduces image variations across data instances that are unrelatedto age-wise variation. The use of Caffe, a deep learning tool is demonstrated. A rather simple deep learning network wasadopted and trained for tutorial purpose. Results: A test set distinct from the training set was formed to assess the validityof the approach. The measured mean absolute difference value was 18.9 months, and the concordance correlation coefficientwas 0.78. Conclusions: It is shown that the proposed deep learning-based neural network can be used to estimate a subject’sage from hand X-ray images, which eliminates the need for tedious atlas look-ups in clinical environments and should improvethe time and cost efficiency of the estimation process.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0