메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제52권 제3호
발행연도
2015.1
수록면
977 - 986 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let G be a graph on the vertex set V (G) = {x1, . . . , xn} with the edge set E(G), and let R = K[x1, . . . , xn] be the polynomial ring over a field K. Two monomial ideals are associated to G, the edge ideal I(G) generated by all monomials xixj with {xi, xj} ∈ E(G), and the vertex cover ideal IG generated by monomials ∏xi∈C xi for all minimal vertex covers C of G. A minimal vertex cover of G is a subset C ⊂ V (G) such that each edge has at least one vertex in C and no proper subset of C has the same property. Indeed, the vertex cover ideal of G is the Alexander dual of the edge ideal of G. In this paper, for an unmixed bipartite graph G we consider the lattice of vertex covers LG and we explicitly describe the minimal free resolution of the ideal associated to LG which is exactly the vertex cover ideal of G. Then we compute depth, projective dimension, regularity and extremal Betti numbers of R/I(G) in terms of the associated lattice.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0