메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Reza Naghipour (University of Tabriz) Somayeh Vosughian (Institute for Advanced Studies in Basic Sciences)
저널정보
대한수학회 대한수학회보 대한수학회보 제58권 제3호
발행연도
2021.1
수록면
711 - 720 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $R$ denote a commutative noetherian ring, and let ${\bf x} :=x_1,\ldots,x_d$ be an $R$-regular sequence. Suppose that $\mathfrak a$ denotes a monomial ideal with respect to ${\bf x}$. The first purpose of this article is to show that $\mathfrak a$ is irreducible if and only if $\mathfrak{a}$ is a generalized-parametric ideal. Next, it is shown that, for any integer $n\geq 1$, $(x_1,\ldots,x_d)^{n}=\bigcap {\bf P}(f),$ where the intersection (irredundant) is taken over all monomials $f=x_1^{e_1}\cdots x_d^{e_d}$ such that ${\rm deg}(f)=n-1$ and ${\bf P}(f):=(x_{1}^{e_{1}+1},\dots,x_{d}^{e_{d}+1})$. The second main result of this paper shows that if $\mathfrak q:=(\bf x)$ is a prime ideal of $R$ which is contained in the Jacobson radical of $R$ and $R$ is $\mathfrak q$-adically complete, then $\mathfrak{a}$ is a parameter ideal if and only if $\mathfrak{a}$ is a monomial irreducible ideal and ${\rm Rad}(\mathfrak{a})=\mathfrak q$. In addition, if $\mathfrak{a}$ is generated by monomials $m_{1},\dots, m_{r},$ then ${\rm Rad}(\mathfrak{a})$, the radical of $\mathfrak a$, is also monomial and ${\rm Rad}(\mathfrak{a})=(\omega_{1},\dots, \omega_{r})$, where $\omega_i={\rm rad}(m_i)$ for all $i=1, \dots, r$.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0