메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Purpose Several risk scores have been developed to predict mortality in intracerebral hemorrhage (ICH). We aimed to systematically determine the performance of published prognostic tools. Methods We searched MEDLINE and EMBASE for prognostic models (published between 2004 and April 2014) used in predicting early mortality (<6 months) afer ICH. We evaluated the discrimination performance of the tools through a random-efects meta-analysis of the area under the receiver operating characteristic curve (AUC) or c-statistic. We evaluated the following components of the study validity: study design, collection of prognostic variables, treatment pathways, and missing data. Results We identifed 11 articles (involving 41,555 patients) reporting on the accuracy of 12 diferent tools for predicting mortality in ICH. Most studies were either retrospective or posthoc analyses of prospectively collected data; all but one produced validation data. Te Hemphill-ICH score had the largest number of validation cohorts (9 studies involving 3,819 patients) within our systematic review and showed good performance in 4 countries, with a pooled AUC of 0.80 [95% confdence interval (CI)=0.77–0.85]. We identifed several modifed versions of the Hemphill-ICH score, with the ICH-Grading Scale (GS) score appearing to be the most promising variant, with a pooled AUC across four studies of 0.87 (95% CI=0.84– 0.90). Subgroup testing found statistically signifcant diferences between the AUCs obtained in studies involving Hemphill-ICH and ICH-GS scores (p=0.01). Conclusions Our meta-analysis evaluated the performance of 12 ICH prognostic tools and found greater supporting evidence for 2 models (Hemphill-ICH and ICH-GS), with generally good performance overall.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0