메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents the fabrication of surface acoustic wave (SAW)-based pressure sensor for long-term stable mechanical compression force measurement. SAW pressure sensor has many attractive features for practical pressure measurement: no battery requirement, wireless pressure detection especially at hazardous environments, and easy other functionality integrations such as temperature, humidity, and RFID. A 41o YX LiNbO3 piezoelectric substrate was used because of its high SAW propagation velocity and large values of electromechanical coupling factors K2. A silicon substrate with ~200m deep cavity was bonded to the diaphragm with epoxy, in which gold was covered all over the inner cavity in order to confine electromagnetic energy inside the sensor, and provide good isolation of the device from its environment. The reflection coefficient S11 was measured using network analyzer. High S/N ratio, sharp reflected peaks, and clear separation between the peaks were observed. As a mechanical compression force was applied to the diaphragm from top with extremely sharp object, the diaphragm was bended, resulting in the phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of applied mechanical compression force. The measured S11 results showed a good agreement with simulated results obtained from equivalent admittance circuit modeling.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0