메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제20권 제6호
발행연도
2018.1
수록면
2,865 - 2,872 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
데이터 마이닝 분야에서 개발된 기법에는 연관성 규칙, 군집분석, 의사결정나무, 신경망 등 여러 가지가 있는데 이들 중에서 연관성 규칙은 지지도, 신뢰도, 그리고 향상도 등 여러 가지 연관성 평가 기준을 이용하여 항목들 간에 특정한 연관성을 탐색하는 기법이다(Park, 2014). 이러한 연관성 규칙은 Agrawal et al.(1993)이 처음 제안하였으며, 그 이후로 여러 연구자들에 의해 연구가 진행되고 있으며, 최근에는 교차 엔트로피와 관련된 연구들이 발표되고 있다(Park, 2016b). 본 논문에서는 기존에 발표된 J 측도에 방향성과 순수성을 고려한 순수 대칭적 J 측도를 제안하고 예제를 활용하여 그 유용성에 대해 알아보았다. 그 결과, 동시발생빈도가 증가함에 따라 순수 대칭적 J 측도가 기존의 J 측도와 대칭적 J 측도, 순수 교차 엔트로피 측도보다 훨씬 분명하게 변하는 것을 알 수 있었으며, 불일치빈도의 크기에 따라서도 순수 대칭적 J 측도가 변화하는 폭이 더 커짐에 따라 연관성 유무를 더 분명하게 파악할 수 있었다. 따라서 순수 대칭적 J 측도는 데이터가 존재하는 어느 분야에서든지 연관성 규칙의 평가에 적용이 가능할 것으로 생각된다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0