메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제20권 제6호
발행연도
2018.1
수록면
2,721 - 2,731 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study purposes to derive the predictive model for the cold tolerance of Brassica napus, using the data collected in the Tree Breeding Lab of Gyeongsang National University during July and August of 2016. Three Brassica napus samples were treated at each of low temperatures from 4℃ to -12℃ by decrement of 4℃, step by step, and electrolyte leakage levels were measured at each stage. Electrolyte leakages were observed tangibly from –4℃. We tried to fit the six nonlinear regression models to the electrolyte leakage data of Brassica napus: 3-parameter logistic model, baseline logistic model, 4-parameter logistic model, (4-1)-parameter logistic model, 3-parameter Gompertz model, and (3-1)-parameter Gompertz model. The baseline levels of the electrolyte leakage estimated by these models were 4.81%, 4.07%, 4.19%, 4.07%, 4.55%, and 0%, respectively. The estimated median lethal temperature, LT50, were –5.87℃, -6.31℃, -6.05℃, -6.35℃, -4.98℃, and -5.15℃, respectively. We compared and discussed the measures of goodness of fit to select the appropriate nonlinear regression model.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0