메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Juhee Lee (Kyungpook National University) Young Min Kim (Kyungpook National University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제28권 제6호
발행연도
2021.11
수록면
627 - 641 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An asymmetric least squares estimation method has been employed to estimate linear models for percentile regression. An asymmetric maximum likelihood estimation (AMLE) has been developed for the estimation of Poisson percentile linear models. In this study, we propose generalized nonlinear percentile regression using the AMLE, and the use of the parametric bootstrap method to obtain confidence intervals for the estimates of parameters of interest and smoothing functions of estimates. We consider three conditional distributions of response variables given covariates such as normal, exponential, and Poisson for three mean functions with one linear and two nonlinear models in the simulation studies. The proposed method provides reasonable estimates and confidence interval estimates of parameters, and comparable Monte Carlo asymptotic performance along with the sample size and quantiles. We illustrate applications of the proposed method using real-life data from chemical and radiation epidemiological studies.

목차

Abstract
1. Introduction
2. Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation
3. Simulation studies
4. Data applications
5. Discussion and conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001432692