메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: To determine an objective cutoff value (COV) for urinary incontinence (UI) using the Expanded Prostate Cancer Composite (EPIC) score after radical prostatectomy (RP). Methods: From 2004–2013, all RP patients at our institution completed the EPIC urinary domain (EPIC-UD) questionnaire preoperatively and 6 weeks; 3, 6, 9, 12, and 18 months postoperatively; and yearly thereafter. The EPIC-UD is composed of several questions, 4 of which address UI qualitatively (EPIC-UI). Furthermore, patients were asked to complete a global quality of life (QoL) questionnaire regarding continence. The EPIC COV was calculated using receiver operating characteristic (ROC) analysis. Correlations between the EPIC-UI and quantitative QoL were evaluated using the Kendall-Tau test. Results: We analyzed 239 patients with a median age of 63 years (interquartile range [IQR], 59–66 years), a median follow-up of 48 months (IQR, 30–78 months) and a median preoperative EPIC-UI score of 100 (IQR, 91.75–100). The ROC analysis for the distinction between EPIC-UI and the use of ≤1 pad/day yielded an EPIC-UI COV of >85, which we termed the UI-85, with an area under the curve of 0.857 (P<0.0001). A stronger correlation was seen between QoL scores and the UI-85 (1 year postoperatively: correlation coefficient [CC], 0.592; P<0.0001) than between QoL and not using a pad (CC, 0.512; P<0.0001). Conclusions: The calculated COV of the EPIC-UI for continence was 85. UI is a multidimensional condition that cannot be adequately characterized by a single piece of information, such as pad usage only. Hence, the UI-85 represents a nuanced and straightforward tool for monitoring and comparing continence between different time points and cohorts in a multidimensional and objective manner.

목차

등록된 정보가 없습니다.

참고문헌 (3)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0