메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Viral safety is an important prerequisite for clinical preparations of plasma-derived pharmaceuticals. One potential way to increase the safety of therapeutic biological products is the use of a virus-retentive filter. In order to increase the viral safety of human antihemophilic factor IX, particularly in regard to non-enveloped viruses, a virus removal process using a polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. The most critical factor affecting the filtration efficiency was operating pH and the optimum pH was 6 or 7. Flow rate increased with increasing operating pressure and temperature. Recovery yield in the optimized productionscale process was 96%. No substantial changes were observed in the physical and biochemical characteristics of the filtered factor IX in comparison with those before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production-scale cartridges and to test if it could remove several experimental model viruses for human pathogenic viruses, including human hepatitis A virus (HAV), porcine parvovirus (PPV), murine encephalomyocarditis virus (EMCV), human immunodeficiency virus type 1 (HIV), bovine viral diarrhea virus (BVDV), and bovine herpes virus (BHV). Nonenveloped viruses (HAV, PPV, and EMCV) as well as enveloped viruses (HIV, BVDV, and BHV) were completely removed during filtration. The log reduction factors achieved were ≥6.12 for HAV, ≥4.28 for PPV, ≥5.33 for EMCV, ≥5.51 for HIV, ≥5.17 for BVDV, and ≥5.75 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of factor IX.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0