메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한산부인과학회 Obstetrics & Gynecology Science Obstetrics & Gynecology Science 제61권 제1호
발행연도
2018.1
수록면
56 - 62 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
ObjectiveThis study aimed to estimate the association between total and ionized magnesium, and the changes in serum magnesium and calcium levels in patients with preterm labor during magnesium sulfate (MgSO4) administration. MethodsThe study population included 64 women who were candidates for intravenous MgSO4 treatment for preterm labor. Serial blood samples were taken and measured total magnesium (T-Mg), ionized magnesium (I-Mg), total calcium (T-Ca), and ionized calcium (I-Ca) levels every one-week interval (1st, 2nd, 3rd). ResultsThere was no significant difference in T-Mg and I-Mg levels during MgSO4 administration (P>0.05). There was no significant difference in T-Ca and I-Ca levels during MgSO4 administration (P>0.05). Compared before and after administration of MgSO4, T-Mg and I-Mg levels and T-Ca levels were changed allow statistically significant (P<0.05). But, there was no significant difference in the I-Ca serum levels before and after MgSO4 administration (P=0.495). The I-Mg levels for patients with adverse effect were higher than other group but did not reach statistical significance (P>0.05). There was significant correlation between levels of I-Mg and T-Mg (I-Mg=0.395×T-Mg+0.144, P<0.01). ConclusionThere were no significant differences in serum Mg and Ca levels during MgSO4 administration for preterm labor. Compared to the before and after administration of MgSO4, only I-Ca levels were not substantially changed. There are significant correlations between I-Mg and T-Mg levels during administration of MgSO4 and I-Mg level seemed to have more correlation with adverse effect than T-Mg.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0