메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제47권 제1호
발행연도
2015.1
수록면
74 - 84 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
If a transient occurs in a nuclear power plant (NPP), operators will try to protect the NPP byestimating the kind of abnormality and mitigating it based on recommended procedures. Similarly, operators take actions based on severe accident management guidelines whenthere is the possibility of a severe accident occurrence in an NPP. In any such situation,information about the occurrence time of severe accident-related events can be veryimportant to operators to set up severe accident management strategies. Therefore, supportsystems that can quickly provide this kind of information will be very useful whenoperators try to manage severe accidents. In this research, the occurrence times of severalevents that could happen during a severe accident were predicted using support vectormachines with short time variations of plant status variables inputs. For the preliminarystep, the break location and size of a loss of coolant accident (LOCA) were identified. Training and testing data sets were obtained using the MAAP5 code. The results show thatthe proposed algorithm can correctly classify the break location of the LOCA and can estimatethe break size of the LOCA very accurately. In addition, the occurrence times ofsevere accident major events were predicted under various severe accident paths, withreasonable error. With these results, it is expected that it will be possible to apply theproposed algorithm to real NPPs because the algorithm uses only the early phase data afterthe reactor SCRAM, which can be obtained accurately for accident simulations

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0