메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국임상약학회 한국임상약학회지 한국임상약학회지 제27권 제4호
발행연도
2017.1
수록면
221 - 227 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: As personalized healthcare industry has attracted much attention, big data analysis of healthcare data is essential. Lots of healthcare data such as product labeling, biomedical literature and social media data are unstructured, extractingmeaningful information from the unstructured text data are becoming important. In particular, text mining for adverse drug reactions(ADRs) reports is able to provide signal information to predict and detect adverse drug reactions. There has been no study on textanalysis of expert opinion on Korea Adverse Event Reporting System (KAERS) databases in Korea. Methods: Expert opinion text ofKAERS database provided by Korea Institute of Drug Safety & Risk Management (KIDS-KD) are analyzed. To understand the wholetext, word frequency analysis are performed, and to look for important keywords from the text TF-IDF weight analysis areperformed. Also, related keywords with the important keywords are presented by calculating correlation coefficient. Results: Amongtotal 90,522 reports, 120 insulin ADR report and 858 tramadol ADR report were analyzed. The ADRs such as dizziness, headache,vomiting, dyspepsia, and shock were ranked in order in the insulin data, while the ADR symptoms such as vomiting, 어지러움,dizziness, dyspepsia and constipation were ranked in order in the tramadol data as the most frequently used keywords. Conclusion:Using text mining of the expert opinion in KIDS-KD, frequently mentioned ADRs and medications are easily recovered. Text mining inADRs research is able to play an important role in detecting signal information and prediction of ADRs.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0