메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제35권 제2호
발행연도
2019.1
수록면
229 - 239 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
모든 식생 군락은 각자 층위구조를 가지고 있다. 이를 ‘식생층위구조’라 부른다. 요즈음은 이 층위구조가 산림의 활력도, 다양성, 그리고 환경영향을 평가하는데 중요한 식별자로 작용하기 때문에 산림조사에 있어서 식생층위구조는 필수적으로 조사되어야한다. 그런데, 식생층위구조는 일종의 내부구조이므로 일반적으로산림조사는 현장조사를 통해 이루어지는데, 이는 전통적인 방식으로 시간과 예산이 많이 든다. 따라서 본 연구에서는 산림의 층위구조를 조사하는데 드는 시간과 예산을 줄이기 위해 넓은 지역 탐사에 효과적인 원격탐사기법 중 항공촬영 사진과 대량의 데이터 마이닝(Data Mining)이 가능한 머신러닝(Machine Learning)기법 이용한층위구조의 분류 방법을 제시한다. 칼라 항공사진, LiDAR(Light Detection and Ranging) DSM(Digital Surface Model)과 DTM(Digital Terrain Model)을 이용하여 Support Vector Machine(SVM) 머신러닝 기법을 이용하여 층위분류 연구를 진행하였다. 현장조사 자료를 참조하여 SVM기법 분류 결과와 비교했을 때 픽셀수에 기반한 정확도는 66.22%로 확인 되었다. 층위 분류 정확도는 단층과 다층의 구분은 비교적 높게 나타났으나, 다층끼리의분류는 어렵다는 결론이 나타났다. 이러한 연구결과는 향후 다양한 식생데이터와 영상자료를 수집한다면 식생구조에 대한 머신러닝 연구분야에 더욱 발전이 가능할 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0