메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤영웅 (서울시립대학교) 정형섭 (서울시립대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제40권 제2호
발행연도
2024.4
수록면
123 - 139 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Forest vertical structure is vital for comprehending ecosystems and biodiversity, in additionto fundamental forest information. Currently, the forest vertical structure is predominantly assessed viaan in-situ method, which is not only difficult to apply to inaccessible locations or large areas but alsocostly and requires substantial human resources. Therefore, mapping systems based on remote sensingdata have been actively explored. Recently, research on analyzing and classifying images using machinelearning techniques has been actively conducted and applied to map the vertical structure of forestsaccurately. In this study, Sentinel-2 and digital surface model images were obtained on two different datesseparated by approximately one month, and the spectral index and tree height maps were generatedseparately. Furthermore, according to the acquisition time, the input data were separated into cases 1 and2, which were then combined to generate case 3. Using these data, forest vetical structure mapping modelsbased on random forest, support vector machine, and extreme gradient boost (XGBoost) were generated. Consequently, nine models were generated, with the XGBoost model in Case 3 performing the best, withan average precision of 0.99 and an F1 score of 0.91. We confirmed that generating a forest verticalstructure mapping model utilizing bi-seasonal data and an appropriate model can result in an accuracyof 90% or higher.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0