메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제42권 제3호
발행연도
2019.1
수록면
25 - 38 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study is to develop a diagnostic model for the effective introduction of smart factories in the manufacturing industry, to diagnose SMEs that have difficulties in building their own smart factory compared to large enterprise, to identify the current level and to present directions for implementation. IT, AT, and OT experts diagnosed 18 SMEs using the "Smart Factory Capacity Diagnosis Tool" developed for smart factory level assessment of companies. They analyzed the results and assessed the level by smart factory diagnosis categories. Companies' smart factory diagnostic mean score is 322 out of 1000 points, between 1 level (check) and 2 level (monitoring). According to diagnosis category, Factory Field Basic, R&D, Production/Logistics/Quality Control, Supply Chain Management and Reference Information Standardization are high but Strategy, Facility Automation, Equipment Control, Data/Information System and Effect Analysis are low. There was little difference in smart factory level depending on whether IT system was built or not. Also, Companies with large sales amount were not necessarily advantageous to smart factories. This study will help SMEs who are interested in smart factory. In order to build smart factory, it is necessary to analyze the market trends, SW/ICT and establish a smart factory strategy suitable for the company considering the characteristics of industry and business environment.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0