메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김설호 (숭실대학교) 장석우 (안양대학교) 김계영 (숭실대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제23권 제12호
발행연도
2019.12
수록면
1,528 - 1,534 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 들어, 3차원의 깊이 카메라의 대중화로 인해서 RGB 영상에서 수행되던 연구에 새로운 관심과 기회가 생겼지만 사람의 손 자세의 추정은 여전히 어려운 주제 중의 하나로 분류되고 있다. 본 논문에서는 다양하게 입력되는 3차원의 깊이 영상으로부터 사람의 손의 자세를 학습 알고리즘을 이용하여 강인하게 추정하는 방법을 제안한다. 제안된 접근 방법에서는 먼저 뼈대 기반의 손 모델을 생성한 다음, 생성된 손 모델을 3차원의 포인트 클라우드 데이터에 정렬한다. 그런 다음, 랜덤 포레스트 기반의 학습 알고리즘을 이용하여 정렬된 손 모델로부터 손의 자세를 강인하게 추정한다. 본 논문의 실험 결과에서는 제안된 접근 방법이 다양한 실내외의 환경에서 촬영된 입력 영상으로부터 사람의 손의 자세를 강인하고 빠르게 추정한다는 것을 보여준다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 손 모델의 정렬
Ⅲ. 손 자세의 추정
Ⅳ. 실험결과
Ⅴ. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0