메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양성봉 (Korea National Defense University) 이수진 (Korea National Defense University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제1호(통권 제190호)
발행연도
2020.1
수록면
45 - 53 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
기존의 CNN 알고리즘은 위성영상과 같은 대형 이미지에서 소형 객체를 식별하는 것이 불가능하다는 문제점을 가지고 있었다. 본 연구에서는 이러한 문제를 해결하기 위해 관심영역 설정 및 이미지 분할기법을 적용한 CNN 알고리즘 개선방안을 제시하였다. 실험은 비행장 및 항공기 데이터셋으로 전환학습한 YOLOv3 / Faster R-CNN 알고리즘과 테스트용 대형 이미지를 이용하여 진행하였으며, 우선 대형 이미지에서 관심영역을 식별하고 이를 순차적으로 분할해 나가며 CNN 알고리즘의 객체식별 결과를 비교하였다. 분할 이미지의 크기는 실험을 통해 최소 분할로 최대의 식별률을 얻을 수 있는 최적의 이미지 조각 크기를 도출하여 적용하였다. 실험 결과, 본 연구에서 제시한 방안을 통해 CNN 알고리즘으로 대형 이미지에서의 소형 객체를 식별하는 것이 충분히 가능함을 검증하였다.

목차

[Abstract]
[요약]
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. Problem Definition
Ⅳ. The Proposed Scheme
Ⅴ. Experiments
Ⅵ. Conclusions
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000272295