메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최수정 (경북대학교) 박세영 (경북대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.5
발행연도
2020.5
수록면
473 - 478 (6page)
DOI
10.5626/JOK.2020.47.5.473

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
링크 추정은 개체 사이의 관계를 추정하는 문제로, 지식 베이스를 완전하게 만들기 위한 태스크 중 하나이다. 지식 베이스는 많은 개체와 관계들을 포함하고 있지만, 누락된 지식 트리플들이 존재하기 때문에 완전하지 않다. 누락된 지식 트리플들은 지식 베이스의 활용에 한계를 야기하기 때문에 누락된 관계 정보들을 찾아 지식 베이스를 완전하게 만들기 위해 본 논문은 링크 추정을 수행하고자 한다. 기존의 링크 추정을 위한 연구들은 주로 지식 그래프 임베딩을 활용하여 누락된 관계들을 찾았다. 하지만 임베딩된 벡터들은 정확성이 부족하기 때문에 hit@10에서는 좋은 성능을 보였지만, hit@1에서는 부족한 성능을 보여 주었다. 그러므로 하나의 지식 그래프 임베딩만을 사용하여 링크를 추정하는 것은 효과적이지 않으며, 지식 그래프 임베딩들은 각자의 관점을 가지고서 임베딩하기 때문에 이들을 함께 고려하는 것이 필요하다. 따라서 본 논문에서는 기존의 링크 추정의 성능을 높이기 위하여 지식 그래프 임베딩 기반의 앙상블 모델을 제안한다. 지식 그래프 임베딩 모델들은 각자의 관점 및 특성을 가지고 있기 때문에, 이들을 결합하면 다양한 관점들을 고려할 수 있다. WN18과 FB15K 데이터 셋으로 실험한 결과, 기존의 각 모델들보다 제안한 모델이 평균적으로 13.5% 높은 성능을 보여 주었다. 또한 사용자 파라미터에 기존 모델보다 강건한 결과를 보여 제안한 모델의 우수함을 증명하였다.

목차

요약
Abstract
1. 서론
2. 링크 추정을 위한 앙상블 모델
3. 실험 및 결과
4. 관련 연구
5. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0