메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yun-hui Qu (Shaanxi University of Science & Technology) Wei Tang (Shaanxi University of Science & Technology) Bo Feng (Shaanxi University of Science & Technology)
저널정보
한국펄프·종이공학회 펄프·종이기술 펄프·종이기술 제52권 제2호(통권 제193호)
발행연도
2020.4
수록면
43 - 51 (9page)
DOI
10.7584/JKTAPPI.2020.04.52.2.43

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Traditional paper defect detection algorithms have the problems of low detection rate and poor anti-interference ability for low contrast paper defects such as cracks and folds. Considering these problems, an algorithm of low contrast paper defects based on artificial bee colony optimization was presented. Firstly, the Gabor filter was used to eliminate the texture elements and enhance the contrast. Then, the optimal segmentation threshold of 2-D OSTU was obtained by taking the trace of the dispersion matrix of the filtered paper disease image as the objective function of the artificial swarm optimization. Finally, according to the best segmentation threshold, the paper image was detected by 2-D OSTU method. The simulation results indicated that this algorithm has the advantages of high detection rate, accurate positioning and good anti-disturbance performance for low contrast paper defects.

목차

ABSTRACT
1. Introduction
2. The Filtering of Paper Defects Image
3. 2-D OSTU Algorithm Based on ABC Optimization
4. Web Inspection Algorithm for Low Contrast Paper Defects Based on ABC Optimization
5. Results and Discussion
6. Conclusions
Literature Cited

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-586-000604741