메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정진교 (가천대학교) 김영재 (가천대학교) 김광기 (가천대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제23권 제5호
발행연도
2020.5
수록면
625 - 632 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the diagnosis of lung cancer, the tumor size is measured by the longest diameter of the tumor in the entire slice of the CT. In order to accurately estimate the size of the tumor, it is better to measure the volume, but there are some limitations in calculating the volume in the clinic. In this study, we propose an algorithm to segment lung cancer by applying a custom loss function that combines focal loss and dice loss to a U-Net model that shows high performance in segmentation problems in chest CT images. The combination of values of the various parameters in custom loss function was compared to the results of the model learned. The purposed loss function showed F1 score of 88.77%, precision of 87.31%, recall of 90.30% and average precision of 0.827 at α = 0.25, γ = 4, β = 0.7. The performance of the proposed custom loss function showed good performance in lung cancer segmentation.

목차

ABSTRACT
1. 서론
2. 재료 및 방법
3. 결과
4. 결론
REFERENCE

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000606091