메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Masaru Sumida (Kindai University) Kentaro Imamura (Kindai University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.13 No.2
발행연도
2020.6
수록면
425 - 436 (12page)
DOI
10.5293/IJFMS.2020.13.2.425

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study investigates the flow characteristics of pulp suspensions flowing through a 90° bend, which is used in the production system of an actual papermaking machine, e.g., for transporting the pulp suspensions from its stock reservoir to the header. Experiments were conducted on pulp suspensions with a fiber concentration C<SUB>s</SUB> of 0.3 and 0.6 wt% and a bend with a diameter of 22 mm and a curvature radius ratio of 4.0. Flow visualization and measurements of the distributions of time-averaged fiber concentration C<SUB>a</SUB> and axial velocity U were performed with a light section method and the particle image velocimetry (PIV) method, respectively, at representative bulk velocities and at various longitudinal stations. The influence of the flow rate on the changes of their distributions in the streamwise direction was examined. The flow characteristics of the pulp suspension depend on the flow pattern in the upstream straight tube and are greatly different from those of the single-phase water flow. For a low flow rate, the flocculated pulp fibers move without getting disentangled in the bend and the distribution of C<SUB>a</SUB> shows a shape bias towards the inner wall side. As the flow rate is increased, C<SUB>a</SUB> becomes larger in the outer part of the bend, and it changes into a rather flat distribution in the downstream tangent.

목차

Abstract
1. Introduction
2. Experimental Apparatus and Procedures
3. Results and Discussion
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0