메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
IN KWON (SAMSUNG ELECTRONICS) GWANGHYUN JO (KUNSAN NATIONAL UNIVERSITY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.24 No.2
발행연도
2020.6
수록면
143 - 159 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We propose a consistent numerical method for elliptic interface problems with nonhomogeneous jumps. We modify the discontinuous bubble immersed finite element method (DB-IFEM) introduced in (Chang et al. 2011), by adding a consistency term to the bilinear form. We prove optimal error estimates in L² and energy like norm for this new scheme. One of the important technique in this proof is the Bramble-Hilbert type of interpolation error estimate for discontinuous functions. We believe this is a first time to deal with interpolation error estimate for discontinuous functions. Numerical examples with various interfaces are provided. We observe optimal convergence rates for all the examples, while the performance of early DB-IFEM deteriorates for some examples. Thus, the modification of the bilinear form is meaningful to enhance the performance.

목차

ABSTRACT
1. INTRODUCTION
2. PRELIMINARIES
3. DB-IFEM
4. ERROR ANALYSIS
5. NUMERICAL RESULTS
6. CONCLUSION
REFERENCES

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-410-000855169