메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정남 (Kangwon National University) 조현종 (Kangwon National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제7호
발행연도
2020.7
수록면
1,067 - 1,072 (6page)
DOI
10.5370/KIEE.2020.69.7.1067

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The importance of flight safety has been highlighted lately due to the increase of aviation industry. Baggage screening tasks are still difficult and the failures of dangerous object detection are frequent despite the improvement of screening equipment. The purpose of this study to develop the AI system on dangerous object detection for improving aviation safety. The convolutional neural network model, Xception, were applied to perform dangerous object recognition using X-ray baggage image dataset which contains 25,405 images of twelve items. Based on experiments, the accuracy and F1-score are 0.9939 and 0.9942. The significantly high success rate makes the model a very effective advisory or early warning tool, and an approach that could be further expanded to support a dangerous object identification system to operate in real airport screening process.

목차

Abstract
1. 서론
2. 이론 및 방법
3. 연구 결과
4. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-000860418