메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 시설물 내부 철근 두께를 예측하기 위해 GPR 데이터를 활용한 철근 두께 예측 기법에 관한 연구를 실시하였다. 국내의 규격 미달 철근의 사용 및 배근 시공과 같은 부실시공 사례에서 볼 수 있듯이, 구조물 정밀진단을 위해서 철근 두께에 대한 정보는 정밀 안전진단을 위해서 꼭 필요함을 알 수 있다. 이를 위해 본 연구에서는 시편을 제작하여 철근 직경을 단계적으로 증가시켜 GPR의 B-scan 데이터를 취득하였다. GPR 의 B-scan 데이터는 가시성이 떨어지기 때문에 이를 migration을 통해 히트맵 이미지 데이터로 변화시켜 데이터의 직관성을 높이고자 하였다. 본 연구는 보편적으로 이용되는 B-scan 데이터와 히트맵 데이터의 합성곱 신경망(CNN) 적용 시 결과를 비교하기 위해 B-scan 및 히트맵 데이터에서 각각 철근에 대한 영역을 추출하여 학습 및 검증 데이터를 구축하였으며, 구축된 데이터에 CNN을 적용하였다. 그 결과, 히트맵 데이터의 경우 B-scan 데이터와 비교하였을 때 더 좋은 결괏값을 얻을 수 있었다. 이를 통해 GPR 히트맵 데이터를 이용하였을 경우 B-scan 데이터를 이용하였을 때보다 더 높은 정확도로 철근 두께를 예측할 수 있음을 확인하였으며, 시설물 내부 철근 두께 예측의 가능성을 검증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0