메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제21권 제5호
발행연도
2019.1
수록면
2,239 - 2,252 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The implied volatility index is the composite index of volatilities of all the options listed on an exchange. The implied volatility index is found to be more sensitive to underlying asset’s price decrease than increase. So it is called ‘fear gauge’ of the stock market. The behavioral finance attributes the existence of asset pricing anomalies to two factors: investors' sentiment and arbitrage constraints. This paper attempts to test the effect of investors' sentiment and arbitrage constraints on the implied volatility of KOSPI200 (VKOSPI). In order to measure investor sentiment (limits to arbitrage), we constructed the sentiment (arbitrage constraint) index using principal component of ten (nine) sentiment (limits to arbitrage) variables. After controlling the macro economy effects, the new sentiment index and arbitrage constraint index are reestimated. Main results found are as follows: 1) VKOSPI has very significant impacts on KOSPI200 returns. 2) The empirical results are consistent with behavioral explanations. Both investor sentiment and arbitrage constraints derived from the principal component analysis have meaningful effects on VKOSPI. 3) After controlling the macro economy effects, the pure sentiment index has an insignificant effect, but the pure arbitrage constraint index shows significant impacts on VKOSPI variation. 4) The negative effects of pure arbitrage constraints turn out to be more prominent during the period of high VKOSPI. Thus, it confirmed that the cause of market fear is pure arbitrage constraints, rather than pure investor sentiment.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0