메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배준 (수원대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제7호
발행연도
2020.7
수록면
842 - 848 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
아이튠즈, 스포티파이, 멜론 등 음악시장은 바야흐로 스트리밍의 시대로 접어들었고 . 음악 소비자의 취향에 맞는 음악 선곡과 제안을 위해 음악장르 자동 구분 시스템에 대한 요구와 연구가 활발하다. 이전 논문에서 제안한 소프트 맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템을 더욱 발전시켜 생성적 적대 신경망(GAN)을 이용하여 이전 시스템의 미흡한 점이었던 장르 미분류 곡들에 대한 정확도를 높이는 방법을 제안한다. 이전 연구에서는 전체 곡을 작은 샘플 로 나누고 각각의 샘플을 CNN 분석하여 그 결과들의 총합으로 장르 구분을 하는 투표 시스템으로 곡 장르분류 정확도를 높일 수 있었다. 하지만 곡의 스펙트로그램이 곡의 장르를 파악하기에 모호한 곡의 경우에는 미분류 곡으로 남겨놓을 수밖에 없었다. 이 논문에서는 생성적 적대 신경망을 이용하여 미분류 곡의 스펙트로그램을 판독하기 쉬운 장르의 스펙트로그램으로 바꾸어 미분류 곡의 장르 구분 정확도를 높이는 시스템을 제안하고 그 실험결과 기존 방식에 비해 우수한 결과를 도출해낼 수 있었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련연구 및 기존연구 문제점
Ⅲ. 딥러닝 음악 장르 분류 투표 시스템 모델
Ⅳ. 실험결과
Ⅴ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001107142