메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤호원 (광운대학교) 신성현 (광운대학교) 장우진 (광운대학교) 박호종 (광운대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제21권 제6호
발행연도
2016.11
수록면
977 - 985 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 스펙트로그램과 심층 신경망을 이용한 온라인 오디오 장르 분류 방법을 제안한다. 제안한 방법은 온라인 동작을 위하여 1초 단위로 신호를 입력하여 speech, music, effect 중 하나의 장르로 분류하고, 동작의 범용성을 위하여 기존 오디오 분석에 널리 사용되는 MFCC 대신에 스펙트로그램 기반의 특성 벡터를 사용한다. 실제 TV 방송 신호를 사용하여 장르 분류 성능을 측정하였고, 제안 방법이 기존 방법보다 각 장르에 대하여 우수한 성능을 제공하는 것을 확인하였다. 특히 제안 방법은 기존 방법에서 나타나는 music과 effect 사이를 잘못 분류하는 문제점을 감소시킨다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존 오디오 장르 분류 방법
Ⅲ. 제안하는 오디오 장르 분류 방법
Ⅳ. 성능 분석
Ⅴ. 결론
참고문헌(References)

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-567-001919101