메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장우진 (광운대학교) 윤호원 (광운대학교) 신성현 (광운대학교) 조효진 (광운대학교) 장원 (광운대학교) 박호종 (광운대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제22권 제6호
발행연도
2017.11
수록면
693 - 701 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 스파이크그램과 심층 신경망을 이용한 새로운 음악 장르 분류 방법을 제안한다. 인간의 청각 시스템은 최소 에너지와 신경 자원을 사용하여 최대 청각 정보를 뇌로 전달하기 위하여 입력 소리를 시간과 주파수 영역에서 부호화한다. 스파이크그램은 이러한 청각 시스템의 부호화 동작을 기반으로 파형을 분석하는 기법이다. 제안하는 방법은 스파이크그램을 이용하여 신호를 분석하고 그 결과로부터 장르 분류를 위한 핵심 정보로 구성된 특성 벡터를 추출하고, 이를 심층 신경망의 입력 벡터로 사용한다. 성능 측정에는 10개의 음악 장르로 구성된 GTZAN 데이터 세트를 사용하였고, 제안 방법이 기존 방법에 비해 낮은 차원의 특성 벡터를 사용하여 우수한 성능을 제공하는 것을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 스파이크그램 추출
Ⅲ. 제안하는 음악 장르 분류 방법
Ⅳ. 성능 분석
Ⅴ. 결론
참고문헌 (References)

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-567-001576755