메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
설유진 (가천대학교) 김영재 (가천대학교) 남계현 (순천향대학교) 김광기 (가천대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제23권 제7호
발행연도
2020.7
수록면
812 - 818 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Cervical cancer is the second most common female cancer in the world. In Korea, cervical cancer accounts for 13 percent of female cancers and 4,200 cases occur annually[1]. The purpose of this study is to use a deep learning model to identify the possibility of lesions in the cervix and to evaluate the efficient image preprocessing in order to diagnose diverse types of cervix in form. The study used 4,107 normal photographs of uterine cervix and 6,285 abnormal photographs of uterine cervix. Two types of image preprocessing were resized to square. The methods are cropping based on height and filling the space up and down with black images. In addition, all images were resampled to 256×256. The average accuracy of cropped cases is 94.15%. The average accuracy of the filled cases is 93.41%. According to the study, the model performance of cropped data was slightly better. But there were several images that were not accurately classified. Therefore, the additional experiment with pre-treatment process based on cropping is needed to cover images of the cervix in more detail.

목차

ABSTRACT
1. 서론
2. 재료 및 방법
3. 결과
4. 고찰
REFERENCE

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001095181