메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
고성영 (경희대학교) 이성배 (경희대학교) 박성환 (경희대학교) 김규헌 (경희대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
10 - 13 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 초고화질 영상, 가상현실 등 프리미엄 콘텐츠에 대한 요구가 커지면서 360° VR과 8K TV 등의 시장이 확대되고 있다. 360° VR 영상을 만드는 데에 스티칭 기술이 사용되고 있고, 8K 영상을 촬영할 수 있는 장비는 매우 제한적이기 때문에 스티칭 기술을 통해 콘텐츠를 확보하려는 노력이 이어지고 있다. 스티칭 기술은 여러 영상을 합성하여 기존 카메라의 좁은 시야각 문제를 해결하고 보다 넓은 시야각의 영상을 만드는 기술이다. 최근에는 해당 분야에 관한 연구가 진행됨에 따라 이미지를 넘어 동영상 스티칭에 대한 연구가 주로 진행되고 있다, 기존 동영상 스티칭 방식은 이미지 스티칭 방식을 프레임마다 반복하기 때문에 시간이 오래 걸린다는 단점이 있다. 컴퓨터 비전 분야에서는 딥러닝을 활용하여 객체가 존재할 것으로 예측되는 부분에 사각형 모양의 경계 상자(Bounding box)를 생성하는 객체 탐지(Object detection) 분야에 관한 많은 연구가 이루어져 왔고 이를 기반으로 객체의 경계선을 검출하여 해당 영역만을 구분하는 객체 분할(Instance segmentation)에 대한 연구 또한 진행 중이다. 본 논문에서는 앞서 말한 스티칭 속도 문제를 해결하기 위하여 빠른 속도로 객체 분할이 가능한 YOLACT를 이용하여 스티칭 속도를 개선하는 방안을 제안한다.

목차

요약
1. 서론
2. 기존 스티칭 방법 분석
3. YOLACT를 이용한 스티칭 방법
4. 실험 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001082853