메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Shim, B. O. (Korea Institute of Geoscience and Mineral Resources) Chung, S. Y. (Pukyong National University) Kim, H. J. (Pukyong National University) Sung, I. H. (Korea Institute of Geoscience and Mineral Resources)
저널정보
한국지구물리.물리탐사학회 한국지구물리탐사학회 학술대회 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
발행연도
2003.1
수록면
352 - 361 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We have evaluated the extent of saltwater intrusion from electrical resistivity distribution in a coastal aquifer system in the southeastern part of Busan, Korea. This aquifer system is divided into four layers according to the hydrogeologic characteristics and the horizontal extent of intruded saltwater is determined at each layer through the geostatistical interpretation of electrical resistivity data. In order to define the statistical structure of electrical resistivity data, variogram analysis is carried out to obtain best generalized covariance models. IRF-k (intrinsic random function of order k) kriging is performed with covariance models to produce the plane of spatial mean resistivities. The kriged estimates are evaluated by cross validation to show a good agreement with the true values and the statistics of cross validation represented low errors for the estimates. In the resistivity contour maps more than 5 m below the surface, we can see a dominant direction of saltwater intrusion beginning from the east side. The area of saltwater intrusion increases with depth. The northeast side has low resistivities less than 5 ohm-m due to the presence of saline water in the depth range of 20 m through 70 m. These results show that the application of geostatistical technique to electrical resistivity data is useful for assessing saltwater intrusion in a coastal aquifer system.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0