메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
전응섭 (인덕대학 소프트웨어 개발과)
저널정보
한국IT서비스학회 한국IT서비스학회 학술대회 한국IT서비스학회 2003년도 추계학술대회
발행연도
2003.1
수록면
616 - 623 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since the computing environment changes very rapidly, the estimation of software effort is very difficult because it is not easy to collect a sufficient number of relevant cases from the historical data. If we pinpoint the cases, the number of cases becomes too small. However if we adopt too many cases, the relevance declines. So in this paper we attempt to balance the number of cases and relevance. Since many researches on software effort estimation showed that the neural network models perform at least as well as the other approaches, so we selected the neural network model as the basic estimator. We propose a search method that finds the right level of relevant cases for the neural network model. For the selected case set, eliminating the qualitative input factors with the same values can reduce the scale of the neural network model. Since there exists a multitude of combinations of case sets, we need to search for the optimal reduced neural network model and corresponding case set. To find the quasi-optimal model from the hierarchy of reduced neural network models, we adopted the beam search technique and devised the Case-Set Selection Algorithm. This algorithm can be adopted in the case-adaptive software effort estimation systems.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0