메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
이건 (홍익대학교 토목공학과) 김동균 (홍익대학교 토목공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2017년도 학술발표회
발행연도
2017.1
수록면
170 - 170 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구의 목표는 극한 지역의 대비 시스템을 구축하기 위하여 인공 신경망(Artificial Neural Networks)을 이용하여 보다 관측하기 쉬운 기상 인자들로부터 적설량을 실시간 측정 가능성을 제시하는 것이다. 본 연구에서 사용한 데이터베이스는 기상청의 기상자료개방포털에서 사람이 직접 측정한 종관기상관측의 자료다. 이 중에서 일최대 기온, 일최저 기온, 일평균 기온, 강수량을 사용하여 오차를 줄여나가는 최적화방법으로 인공 신경망 시스템을 설계하였다. 설계된 시스템으로 500회 시뮬레이션한 연구 결과는 상관계수가 적설량 측정에 대한 인공 신경망의 크기(노드의 개수)와 관계없이 평균적으로 0.8627인 것을 보여준다. 추가적으로 보조 입력 값인 고도를 사용한 결과, 성능은 좋아졌지만 상관계수의 차이는 평균 0.0044로 미세했다. 또한 Cross-Validation을 통해 기존의 보간법인 Kriging기법과 비교하여 미 관측 지역에서 인공 신경망(ANNs) 사용이 Kriging기법 보다 우수하다는 것을 2차원 Regression's map을 통해 나타냈다. 마지막으로 오차가 크게 발생했을 경우 보안할 수 있는 확률적인 방안을 제시하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0