메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이건 (홍익대학교 토목공학과) 이동률 (한국건설기술연구원 수문레이더 재해연구.데이터센터) 김동균 (홍익대학교 토목공학과)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제50권 제10호
발행연도
2017.1
수록면
681 - 690 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 우리나라 전역에 대하여 인공신경망 기법을 사용하여 일최심신적설을 추정하였다. 인공신경망 모형 구조를 시행 착오법을 이용하여 설계한 결과, 입력자료는 일 최저 기온, 일 평균 기온, 강수량으로 정하였고, 은닉층과 노드의 수는 각각 1층, 10개로 정하였다. 관측값을 인공신경망의 입력자료로 활용하는 경우, 교차검증 상관계수는 0.87로 Ordinary Kriging기법을 활용하여 일최신심적설을 공간보간한 경우의 교차검증상관계수인 0.40보다 크게 높았다. 미계측 지역의 일최심신적설을 추정하는 경우의 인공신경망 모형의 성능을 알아보기 위하여 인공신경망 모형의 입력자료들을 Ordinary Kriging으로 공간보간하여 일최심신적설을 추정하였다. 이 경우 교차검증 상관계수는 0.49였다. 또한 해발 고도 200 m 이상의 산지에서의 인공신경망의 성능은 나머지 지역인 평지에서의 성능보다 다소 떨어짐을 확인하였다. 본 연구의 이러한 결과는 우리나라 전역에 걸친 정확한 적설량의 즉각적인 산정에 인공신경망 모형이 효과적으로 활용될 수 있음을 의미한다.

목차

등록된 정보가 없습니다.

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0