메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서상룡 (Insti. of Ag. Sci. and Tech., College of Ag. and Life Science, Chonnam Nat′l Univ.) 최승묵 (Ministry of Agricuture and Forestry) 조남홍 (National Agricultural Mechanization Research Institute) 박종률 (National Agricultural Mechanization Research Institute)
저널정보
한국농업기계학회 바이오시스템공학(구 한국농업기계학회지) 바이오시스템공학 제28권 제3호
발행연도
2003.1
수록면
231 - 238 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Rose and chrysanthemum are the most popular flowers in Korean floriculture. Sorting flowers is a labor intensive operation in cultivation of the cut flowers and needed to be mechanized. Machine vision is one of the promising solutions for this purpose. This study was carried out to develop hardware and software of a cut flower sorting system using machine vision and to test its performance. Results of this study were summarized as following; 1. Length of the cut flower measured by the machine vision system showed a good correlation with actual length of the flower at a level of the coefficients of determination (R$^2$) of 0.9948 and 0.9993 for rose and chrysanthemum respectively and average measurement errors of the system were about 2% and 1% of the shortest length of the sample flowers. The experimental result showed that the machine vision system could be used successfully to measure length of the cut flowers. 2. Stem diameter of the cut flowers measured by the machine vision system showed a correlation with actual diameter at the coefficients of determination (R$^2$) of 0.8429 and 0.9380 for rose and chrysanthemum respectively and average measurement errors of the system were about 15% and 7.5% of the shortest diameter of the sample flowers which could be a serious source of error in grading operation. It was recommended that the error rate should be considered to set up grading conditions of each class of the cut flowers. 3. Bud maturity of 20 flowers each judged using the machine vision system showed a coincidence with the judgement by inspectors at ranges of 80%∼85% and 85%∼90% for rose and chrysanthemum respectively. Performance of the machine vision system to judge bud maturity could be improved through setting up more precise criteria to judge the maturity with more samples of the flowers. 4. Quality of flower judged by stem curvature using the machine vision system showed a coincidence with the judgement by inspectors at 90% for good and 85% for bad flowers of both rose and chrysanthemum. The levels of coincidence was considered as that the machine vision system used was an acceptable system to judge the quality of flower by stem curvature.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0