메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Singh, Parminder (Department of Mathematics, Gurn Nanak Dev University) Gill, A.N. (Department of Statistics, Panjab University)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제32권 제3호
발행연도
2003.1
수록면
299 - 309 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let ${\pi}_1,...,{\pi}_{k}$k($\geq$2) independent logistic populations such that the cumulative distribution function (cdf) of an observation from the population ${\pi}_{i}$ is $$F_{i}\;=\; {\frac{1}{1+exp{-\pi(x-{\mu}_{i})/(\sigma\sqrt{3})}}},\;$\mid$x$\mid$&lt;\;{\infty}$$&lt;/TEX&gt; where ${\mu}_{i}(-{\infty}\; < \; {\mu}_{i}\; <\; {\infty}$ is unknown location mean and ${\delta}^2$ is known variance, i = 1,..., $textsc{k}$. Let ${\mu}_{[k]}$ be the largest of all ${\mu}$'s and the population ${\pi}_{i}$ is defined to be 'good' if ${\mu}_{i}\;{\geq}\;{\mu}_{[k]}\;-\;{\delta}_1$, where ${\delta}_1\;>\;0$, i = 1,...,$textsc{k}$. A selection procedure based on sample median is proposed to select a subset of $textsc{k}$ logistic populations which includes all the good populations with probability at least $P^{*}$(a preassigned value). Simultaneous confidence intervals for the differences of location parameters, which can be derived with the help of proposed procedures, are discussed. If a population with location parameter ${\mu}_{i}\;<\;{\mu}_{[k]}\;-\;{\delta}_2({\delta}_2\;>{\delta}_1)$, i = 1,...,$textsc{k}$ is considered 'bad', a selection procedure is proposed so that the probability of either selecting a bad population or omitting a good population is at most 1­ $P^{*}$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0