메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lee, S.H. (Machine Vision Team, Life &#65286) Hwang, H. (Technology Co. Ltd.)
저널정보
한국농업기계학회 Agricultural and Biosystems Engineering Agricultural and biosystems engineering 제4권 제1호
발행연도
2003.1
수록면
16 - 21 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the agricultural field, a machine vision system has been widely used to automate most inspection processes especially in quality grading. Though machine vision system was very effective in quantifying geometrical quality factors, it had a deficiency in quantifying color information. This study was conducted to evaluate color of beef using machine vision system. Though measuring color of a beef using machine vision system had an advantage of covering whole lean tissue area at a time compared to a colorimeter, it revealed the problem of sensitivity depending on the system components such as types of camera, lighting conditions, and so on. The effect of color balancing control of a camera was investigated and multi-layer BP neural network based color calibration process was developed. Color calibration network model was trained using reference color patches and showed the high correlation with L*a*b* coordinates of a colorimeter. The proposed calibration process showed the successful adaptability to various measurement environments such as different types of cameras and light sources. Compared results with the proposed calibration process and MLR based calibration were also presented. Color calibration network was also successfully applied to measure the color of the beef. However, it was suggested that reflectance properties of reference materials for calibration and test materials should be considered to achieve more accurate color measurement.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0