메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
홍태호 (부산대학교 경영학부) 김진완 (부산대학교 경영학과)
저널정보
한국정보시스템학회 정보시스템연구 정보시스템연구 제15권 제4호
발행연도
2006.1
수록면
211 - 224 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study investigates the application of data mining techniques such as artificial neural networks, rough sets, and induction teaming to the intrusion detection systems. To maximize the effectiveness of data mining for intrusion detection systems, we introduced the asymmetric costs with false positive errors and false negative errors. And we present a method for intrusion detection systems to utilize the asymmetric costs of errors in data mining. The results of our empirical experiment show our intrusion detection model provides high accuracy in intrusion detection. In addition the approach using the asymmetric costs of errors in rough sets and neural networks is effective according to the change of threshold value. We found the threshold has most important role of intrusion detection model for decreasing the costs, which result from false negative errors.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0