메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박승영 (강원대학교) 김한성 (강원대학교) 정태준 (클라우드브릭)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.9
발행연도
2020.9
수록면
842 - 852 (11page)
DOI
10.5626/JOK.2020.47.9.842

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 웹 어플리케이션 공격의 급격한 증가와 함께 그 종류가 다양해짐에 따라 기존의 기법들만으로는 이를 탐지하는 것에 한계가 있었다. 이러한 문제를 해결하기 위해 convolutional neural network(CNN) 과 같은 기계 학습을 이용한 탐지 기법이 제안되었으나, 이러한 탐지 기법은 판정 오류 샘플에 대한 판정의 신뢰도가 낮다는 단점이 있다. 이 문제를 해결하기 위해, Monte-Carlo batch normalization (MCBN)기법이 제안되었다. 구체적으로, MCBN 기법은 임의의 판정할 샘플이 포함된 서로 다른 mini-batch들을 CNN을 이용하여 반복 판정을 수행하고 이 결과를 평균하여 판정 신뢰도를 추정한다. 그러나 이 기법에서는 mini-batch 를 구성하는 M개의 데이터 중 하나의 판정 데이터를 제외한 모든 데이터에 훈련 데이터를 사용하기 때문에 많은 연산이 요구된다. 따라서 본 논문에서는 불균형 웹 어플리케이션 공격 탐지를 위한 저복잡도 판정 신뢰도 추정 기법을 제안한다. 제안 기법은 판정을 위한 mini-batch 구성 시, 정상 및 공격 샘플 구성 비율을 훈련 과정에서의 비율과 동일하게 유지한다. 이를 위해 판정 데이터에 대한 임시 판정을 이용하여 대략적인 클래스 간 비율을 확인하고 부족한 클래스 데이터를 훈련 데이터로부터 과대표집 하였다. 이를 통해 제안 기법은 MCBN 기법에 비해 계산량을 최대 M배까지 줄였다. 모의 실험 결과로부터, MCBN 기법과 비교하여 판정 성능이 향상되었고 판정 신뢰도 성능저하가 크지 않은 것을 확인하였다.

목차

요약
Abstract
1. 서론
2. CNN 기반 웹 어플리케이션 공격 탐지 기법[5]
3. 판정 신뢰도 추정을 위한 MCBN 기법
4. 제안 기법
5. 성능 평가
6. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0