메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정형선 (연세대학교 보건행정학과) 이준협 (고려대학교 보건행정학과)
저널정보
한국보건행정학회 보건행정학회지 보건행정학회지 제18권 제3호
발행연도
2008.1
수록면
110 - 127 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Expenditures on pharmaceuticals of different concepts were estimated and their functional, financing and providers' breakdowns were examined in line with the OECD's System of Health Accounts (SHA) manual. This study also shows the way such estimates are made. The results are then analyzed particularly from the international perspective. Data from both Household Survey by the National Statistical Office and the National Health and Nutritional Survey by the Ministry of Health and Welfare of Korea were used to estimate pharmaceutical expenditures that. are financed by out-of-pocket payments of the household, while national health insurance data etc. were used for estimation of pharmaceutical expenditures that are financed by public funding sources. The 'per capita expenditure on pharmaceutical/medical non-durables' in Korea stood at 380 US$ PPPs, less than the OECD average of 443 US$ PPPs in 2006, but its share of the per capita health expenditure of 25.9% noticeably outnumbered the OECD average of 17.1%, due partly to low per capita health expenditure as a denominator of the ratio. This indicates that Koreans tend to spend less on health care than an OECD average, while tending to spend more on pharmaceuticals than on other health care services, much like the pattern found in relatively low income countries. An international pharmaceuticals pricing mechanism is most likely responsible for such a tendency. In addition, it is to be noted that the percentage comes down to 21.0%, when expenditures on both medical non-durables and herbal medicine, which is locally quite popular among the elderly, have been excluded.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0