메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
노진상 (고려대학교 영상정보처리협동) 손수원 (고려대학교 전기전자공학과) 김성수 (삼성전자) 이재원 (삼성전자) 고한석 (고려대학교 전기전자공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제34권 제4호
발행연도
2015.1
수록면
303 - 309 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
화자 분할은 사전에 분류되지 않은 데이터를 각각의 화자로 분류하는 연구이며 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)은 간결함과 계산의 효율성으로 인해 화자분할 분야에 널리 사용되어 왔다. 그러나 클러스터의 데이터들이 공간적이지 않으며 서로 다른 클러스터가 근접하여 경계를 공유할 때 오버클러스터링 문제가 발생하여 DBSCAN의 성능이 하락한다. 본 논문에서는 DBSCAN과 문제점을 설명하고, 개체의 지역적 특성에 기반한 밀도 기반 클러스터링 알고리즘을 제안한다. 제안하는 알고리즘은 개체의 지역적 밀도와 분산의 정도에 따라 가변적인 판단 기준을 탐색에 이용한다. DBSCAN과 제안 기법의 실험을 통해 성능을 비교하고 제안 기법의 효용을 보인다. 실험 결과 제안한 방법은 오버클러스터링이 발생하지 않으며 DBSCAN에 비해 보다 높은 정확도를 보여 지역적 특성을 이용한 접근 방법이 효과적임을 증명한다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0