본문 바로가기
[학술저널]

  • 학술저널

박선(BK21-전북 전자정보 고급인력양성사업단) 김경준(한국과학기술원 전산학과)

발행기관의 요청으로 개인이 구매하실 수 없습니다.

표지

북마크 0

리뷰 0

이용수 0

피인용수 4

초록

본 논문은 비음수 행렬 분해와 퍼지 관계를 이용한 새로운 문서군집 방법을 제안한다. 제안된 방법은 비음수 행렬 분해된 의미특징을 이용하여 군집 레이블과 군집의 대표 용어들을 선택함으로서 문서군집의 내부구조를 더 잘 표현할 수 있으며, 퍼지 관계 값을 이용한 군집은 문서군집에 유사하지 않은 문서를 더 잘 구분함으로써 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

This paper proposes a new document clustering method using NMF and fuzzy relationship. The proposed method can improve the quality of document clustering because the clustered documents by using fuzzy relation values between semantic features and terms to distinguish well dissimilar documents in clusters, the selected cluster label terms by using semantic features with NMF, which is used in document clustering, can represent an inherent structure of document set better. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

목차

등록된 정보가 없습니다.

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
인용된 논문이 DBpia에서 서비스 중이라면, 아래 [참고문헌 신청]을 통해서 등록해보세요.
Insert title here