메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhang, Chao (College of Business, Hankuk University of Foreign Studies) Wan, Lili (College of Business, Hankuk University of Foreign Studies)
저널정보
한국IT서비스학회 한국IT서비스학회지 한국IT서비스학회지 제17권 제2호
발행연도
2018.1
수록면
111 - 128 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
About 3.9 million apps and 24 primary categories can be approved on Apple iTunes Store. Making accurate categorization can potentially receive many benefits for developers, app stores, and users, such as improving discoverability and receiving long-term revenue. However, current categorization problems may cause usage inefficiency and confusion, especially for cross-attribution, etc. This study focused on evaluating the reliability of app categorization on Apple iTunes Store by using several rounds of inter-rater reliability statistics, locating categorization problems based on Machine Learning, and making more accurate suggestions about representative functionality stems for each primary category. A mixed methods research was performed and total 4905 popular apps were observed. The original categorization was proved to be substantial reliable but need further improvement. The representative functionality stems for each category were identified. This paper may provide some fusion research experience and methodological suggestions in categorization research field and improve app store's categorization in discoverability.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0