메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Farhid, Morteza (Department of Electrical Engineering, Sahand university of technology) Sedaaghi, Mohammad H. (Department of Electrical Engineering, Sahand university of technology) Shamsi, Mousa (Department of Electrical Engineering, Sahand university of technology)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제19권 제4호
발행연도
2017.1
수록면
383 - 391 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we investigate the impacts of network topology on the performance of a distributed estimation algorithm, namely combine-then-adaptive (CTA) diffusion LMS, based on the data with or without the assumptions of temporal and spatial independence with noisy links. The study covers different network models, including the regular, small-world, random and scale-free whose the performance is analyzed according to the mean stability, mean-square errors, communication cost (link density) and robustness. Simulation results show that the noisy links do not cause divergence in the networks. Also, among the networks, the scale free network (heterogeneous) has the best performance in the steady state of the mean square deviation (MSD) while the regular is the worst case. The robustness of the networks against the issues like node failure and noisier node conditions is discussed as well as providing some guidelines on the design of a network in real condition such that the qualities of estimations are optimized.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0