메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lei, Ying (Department of Civil Engineering, Xiamen University) Yang, Ning (Department of Instrumental and Electrical Engineering, Xiamen University) Xia, Dandan (School of Civil & Architecture Engineering, Xiamen University of Technology)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제20권 제2호
발행연도
2017.1
수록면
207 - 217 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Because of the inevitable uncertainties such as structural parameters, external excitations and measurement noises, the effects of uncertainties should be taken into consideration in structural damage detection. In this paper, two probabilistic structural damage detection approaches are proposed to account for the underlying uncertainties in structural parameters and external excitation. The first approach adopts the statistical moment-based structural damage detection (SMBDD) algorithm together with the sensitivity analysis of the damage vector to the uncertain parameters. The approach takes the advantage of the strength SMBDD, so it is robust to measurement noise. However, it requests the number of measured responses is not less than that of unknown structural parameters. To reduce the number of measurements requested by the SMBDD algorithm, another probabilistic structural damage detection approach is proposed. It is based on the integration of structural damage detection using temporal moments in each time segment of measured response time history with the sensitivity analysis of the damage vector to the uncertain parameters. In both approaches, probability distribution of damage vector is estimated from those of uncertain parameters based on stochastic finite element model updating and probabilistic propagation. By comparing the two probability distribution characteristics for the undamaged and damaged models, probability of damage existence and damage extent at structural element level can be detected. Some numerical examples are used to demonstrate the performances of the two proposed approaches, respectively.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0