메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Pinghe Nia (Beijing University of Technology) Xiaojuan Wang (Beijing University of Technology) Hongyuan Zhou (Beijing University of Technology)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.79 No.3
발행연도
2021.1
수록면
327 - 336 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Most of the existing output-only damage detection methods require the number of sensors should be larger than the number of unknown excitation force, and the force location should be available. This paper presents a novel output-only damage detection method without these requirements. The proposed method is based on the correlation function of acceleration responses. When the structure is under white noise excitations (or ambient excitations), the correlation function of acceleration responses can be treated as free vibration responses with unknown initial conditions. The unknown structural parameters and initial conditions can be simultaneously identified by minimizing the difference between the measured and calculated correlation functions. The unknown initial conditions are identified with state space method and the unknown structural parameters are updated with sensitivity method. Numerical studies of a 2D truss and a five-bay 3D frame structure are conducted to demonstrate the accuracy, effectiveness, and robustness of the proposed method. Experimental studies on an eight-floor steel frame are further carried out. Results show that the proposed method is not only insensitive to environmental noise but also applicable when the number of sensors is less than that of unknown excitations. Also, the proposed method can be used for damage detection when the force location is unknown.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0