메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Liu, Lijun (Department of Civil Engineering, Xiamen University) Su, Han (Department of Civil Engineering, Xiamen University) Lei, Ying (Department of Civil Engineering, Xiamen University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제63권 제6호
발행연도
2017.1
수록면
779 - 788 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
System identification and damage detection for structural health monitoring have received considerable attention. Various time domain analysis methodologies based on measured vibration data of structures have been proposed. Among them, recursive least-squares estimation of structural parameters which is also known as parametric Kalman filter (PKF) approach has been studied. However, the conventional PKF requires that all the external excitations (inputs) be available. On the other hand, structural uncertainties are inevitable for civil infrastructures, it is necessary to develop approaches for probabilistic damage detection of structures. In this paper, a parametric Kalman filter with unknown inputs (PKF-UI) is proposed for the simultaneous identification of structural parameters and the unmeasured external inputs. Analytical recursive formulations of the proposed PKF-UI are derived based on the conventional PKF. Two scenarios of linear observation equations and nonlinear observation equations are discussed, respectively. Such a straightforward derivation of PKF-UI is not available in the literature. Then, the proposed PKF-UI is utilized for probabilistic damage detection of structures by considering the uncertainties of structural parameters. Structural damage index and the damage probability are derived from the statistical values of the identified structural parameters of intact and damaged structure. Some numerical examples are used to validate the proposed method.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0