메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
CHANDR, M. (Department of Mathematics, National Institute of Technology) SHANTHI, V. (Department of Mathematics, National Institute of Technology)
저널정보
한국전산응용수학회 Journal of applied mathematics & informatics Journal of applied mathematics & informatics 제34권 제5호
발행연도
2016.1
수록면
495 - 508 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A singularly perturbed reaction-diffusion fourth-order ordinary differential equation(ODE) with discontinuous source term is considered. Due to the discontinuity, interior layers also exist. The considered problem is converted into a system of weakly coupled system of two second-order ODEs, one without parameter and another with parameter ε multiplying highest derivatives and suitable boundary conditions. In this paper a computational method for solving this system is presented. A zero-order asymptotic approximation expansion is applied in the second equation. Then, the resulting equation is solved by the numerical method which is constructed. This involves non-overlapping Schwarz method using Shishkin mesh. The computation shows quick convergence and results presented numerically support the theoretical results.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0