메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김종우 (한양대학교 경영학부) 배세진 (충남대학교 자연대학 통계학과) 이홍주 (한국과학기술원 테크노경영대학원)
저널정보
한국경영정보학회 경영정보학연구 경영정보학연구 제14권 제2호
발행연도
2004.1
수록면
131 - 149 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Collaborative filtering is one of popular techniques for personalized recommendation in e-commerce sites. An advantage of collaborative filtering is that the technique can work with sparse evaluation data to predict preference scores of new alternative contents or advertisements. There is, however, no in-depth study about the sparsity effect of customer's evaluation data to the performance of recommendation. In this study, we investigate the sparsity effect and hybrid usages of customers' evaluation data and purchase data using an experiment result. The result of the analysis shows that the performance of recommendation decreases monotonically as the sparsity increases, and also the hybrid usage of two different types of data; customers' evaluation data and purchase data helps to increase the performance of recommendation in sparsity situation.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0